

# Unraveling the Catalytic Mechanism of $Co_3O_4$ for the Oxygen Evolution Reaction in a Li $-O_2$ Battery

Jinzhen Zhu,<sup>†</sup> Xiaodong Ren,<sup>†</sup> Jianjun Liu,<sup>\*,†</sup> Wenqing Zhang,<sup>†</sup> and Zhaoyin Wen<sup>‡</sup>

<sup>†</sup>State Key Laboratory of High Performance Ceramics and Superfine Microstructure and <sup>‡</sup>CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, People's Republic of China

**Supporting Information** 

**ABSTRACT:** Unraveling the catalytic mechanism of transition-metal oxides (TMOs) for the charging reaction in a  $\text{Li}-\text{O}_2$  battery and characterizing their surface structures and electronic structure properties of active sites are of great importance for the development of an effective catalyst to improve low round-trip efficiency and power density. In the current study, an interfacial model is first constructed to study the decomposition reaction mechanism of  $\text{Li}_2\text{O}_2$  supported on  $\text{Co}_3\text{O}_4$  surfaces. The computational results indicate that the O-rich  $\text{Co}_3\text{O}_4$  (111)C with a relatively low surface energy in high  $\text{O}_2$  concentration has a high catalytic activity in reducing overpotential and  $\text{O}_2$  desorption barrier due to the electron transfer from the  $\text{Li}_2\text{O}_2$  layer to the underlying surface. Meanwhile, the basic sites of  $\text{Co}_3\text{O}_4$  (110)B surface induce  $\text{Li}_2\text{O}_2$  decomposition into  $\text{Li}_2\text{O}$  and a dangling Co-O bond, which further leads to a high charging voltage in the subsequent cycles. The calculations for transition-metal (TM)-doped  $\text{Co}_3\text{O}_4$  (111) indicate that P-type



doping of  $Co_3O_4$  (111) exhibits significant catalysis in decreasing both charging overpotential and  $O_2$  desorption barrier. The ionization potential of doped TM is determined as an important parameter to regulate the catalytic activity of metal oxides. **KEYWORDS:** *lithium-O<sub>2</sub> battery, catalytic mechanism, Co<sub>3</sub>O<sub>4</sub>, doping transition metal, first-principles calculations* 

## 1. INTRODUCTION

Rechargeable lithium–oxygen  $(Li-O_2)$  batteries have recently attracted great attention due to their superior energy storage density in comparison to conventional Li-ion batteries, which is critical to meet today's stringent power source requirements for electric vehicles and other high-energy applications.<sup>1–7</sup> However, the performance of Li–O<sub>2</sub> batteries is currently limited by several issues such as high charging overpotential,<sup>8,9</sup> low rate capability,<sup>1,10,11</sup> and poor cycling stability.<sup>9,12,13</sup> Nonaqueous aprotic Li–O<sub>2</sub> batteries are based on the net electrochemical reaction  $2Li^+ + O_2 + 2e^- \leftrightarrow Li_2O_2$  with a thermodynamic potential of  $U_0 = 2.96$  V from the Nernst equation. Many experiments determined modest discharging overpotential (~0.3 V) but very high charging overpotential (1.0–1.5 V), resulting in a low round-trip efficiency.<sup>9,14–16</sup>

Due to the limited polarization effects of lithium anodes, the large charging overpotential is mainly attributed to the sluggish oxygen evolution reaction (OER;  $\text{Li}_2\text{O}_2 \rightarrow 2\text{Li}^+ + \text{O}_2 + 2\text{e}^-$ ) in an air electrode.<sup>14,17,18</sup> Tremendous research efforts in experiment and theory have been made to address this critical challenge by incorporating active catalysts in the cathode to enhance the kinetics of the OER: for example, metal oxides,<sup>8,9,16,19-23</sup> noble metals,<sup>24-26</sup> and ceramic based materials (TiN, TiC, and perovskites).<sup>27-29</sup> However, it is still controversial whether transition-metal oxides (TMOs) can improve the electrochemical performance of a Li–O<sub>2</sub> battery. Many TMOs were determined to have little, even no, catalytic

effects in reducing overpotential and improving current density.<sup>30</sup> In contrast, some TMOs with novel nanostructures, <sup>9,31</sup> doping metals,<sup>16</sup> and conductive substrates<sup>23,32,33</sup> were experimentally found to have catalytic activity for the electrochemical reaction in a Li–O<sub>2</sub> battery. These differences stimulated us to elucidate what the key factor is in controlling the catalytic activity and designing a highly active catalyst. Therefore, unraveling the catalytic mechanism of TMOs and characterizing their structural and electronic properties related to catalytic activity are very important to develop practical devices with improved round-trip efficiency.

Among all applied metal oxides, the spinel  $Co_3O_4$  with mixed oxidation states of  $Co^{2+}$  and  $Co^{3+}$  is promising, as it can significantly reduce OER overpotential and improve the cyclic performance of a Li– $O_2$  battery.<sup>8</sup> Previous studies showed that  $Co_3O_4$  exhibited high catalytic activity in electrochemical water splitting,<sup>34</sup> Fischer–Tropsch synthesis,<sup>35</sup> and low-temperature CO oxidation.<sup>36</sup> After studying several metal oxides as cathode catalysts, Débart et al. found that  $Co_3O_4$  supported on carbon gives the lowest charging voltage of ~4.0 V and maintains a relatively good discharging capacity.<sup>8</sup> In 2012, electrochemical studies on an innovatively designed  $Co_3O_4$ @Ni cathode demonstrated a higher rechargeable capacity and much lower

```
Received:June 4, 2014Revised:November 11, 2014Published:November 14, 2014
```



Figure 1. (a) Schematic diagram for the discharging product  $(Li_2O_2)$  deposited on the electrocatalyst surface  $(CO_3O_4)$ . (b) Top and (c) side views of the computational model for the  $Co_3O_4/Li_2O_2/O_2$  interface.

charging voltage (3.5 V) in comparison to noble metal Pt/Au as cathode catalyst.<sup>14,23</sup> However, the detailed catalytic mechanism is unclear. Very recently, Black et al. studied the electrochemical performance of Co<sub>3</sub>O<sub>4</sub> grown on reduced graphene oxide (Co<sub>3</sub>O<sub>4</sub>@RGO) and observed kinetic improvement of mass transport for both the OER and the oxygen reduction reaction (ORR;  $2Li^+ + O_2 + 2e^- \rightarrow Li_2O_2$ ).<sup>37</sup> However, the conventional catalytic effect originating from electron transfer was not found. It is significantly important to develop a proper catalytic model and elucidate the catalytic mechanism of Co<sub>3</sub>O<sub>4</sub> for the OER in a Li–O<sub>2</sub> battery.

During charging, the possible processes related to the catalytic mechanism include interfacial interactions, mass transport, and electrochemical reactions. The experimental characterization of these mechanisms is challenging, as the charging reaction mainly occurs in the interface between the cathode and  $\text{Li}_2\text{O}_2$ .<sup>38</sup> Although there are several theoretical calculations on OER mechanisms and kinetics of pure  $\text{Li}_2\text{O}_2$ , <sup>39–41</sup> computational studies determining the mechanism of  $\text{Li}_2\text{O}_2$  oxidation on a catalyst and unravelling possible catalytic effects have been very limited so far.

In this paper, first-principles studies on the catalytic mechanism of  $Co_3O_4$  surfaces on the OER of  $Li_2O_2$  in a Li– $O_2$  battery are presented. The goal is to find whether the catalytic effect exists in the charging process and what the key factor is that influences the catalytic effect. On the basis of previous experimental and theoretical studies, the interfacial model of  $Li_2O_2/Co_3O_4/O_2$  is constructed to study the  $Li_2O_2$  OER mechanism on different catalytic surfaces. Further, TM-doping calculations have been performed to screen the effective TMs in reducing the charging overpotential and  $O_2$  desorption barrier. Three design rules for an OER catalyst in a Li– $O_2$  battery are therefore proposed on the basis of our mechanistic studies.

# 2. COMPUTATIONAL DETAILS

First-principles calculations in this work were conducted using density functional theory (DFT) with the generalized gradient approximation (GGA) for the exchange-correlation function as formulated by Perdew, Burke, and Ernzerhof (PBE). The valence electron-ion interaction was modeled by the projector augmented wave (PAW) potential as implemented in the Vienna ab initio simulation package (VASP).<sup>42,43</sup> A plane wave basis set with a cutoff energy of 450 eV was used. Electron

correlation within the d states significantly affects the electronic structure and energetic properties of transition-metal oxides.<sup>44,45</sup> On the basis of the previous reports, the GGA+U (U = 2.0 eV) approach was used in our calculations.<sup>45,46</sup> The band gap of bulk Co<sub>3</sub>O<sub>4</sub> is calculated to be 1.51 eV by DFT+U, which is consistent with the experimental value (1.44–1.52 eV).<sup>47–50</sup>

For the well-known overbinding issue of the O<sub>2</sub> molecule using DFT, the energy of the O<sub>2</sub> molecule is determined by the formula  $H(T = 0 \text{ K}, \text{O}_2) = 2H(T = 0 \text{ K}, \text{O}) - \Delta E^{\text{exptl}}{}^{51}$  where  $\Delta E^{\text{exptl}}$  (5.12 eV) is the binding energy of O<sub>2</sub><sup>52</sup> and H(T = 0, X)is the calculated ground state energy of the oxygen atom (X = O) or oxygen molecule (X = O<sub>2</sub>). The free energy of O<sub>2</sub> includes the enthalpic contributions of 7/2  $k_{\text{B}}T$  from transitional, rotational, and PV degrees of freedom, while the entropic contributions are taken from tabulated experimental data.<sup>51,52</sup> On the basis of experimentally thermodynamic data of bulk Li<sub>2</sub>O<sub>2</sub> and Li,<sup>52</sup> the open-circuit potential of 2Li<sup>+</sup> + O<sub>2</sub> +  $2e^- \leftrightarrow \text{Li}_2\text{O}_2$  is 2.98 V, which is close to the experimental value (2.96 V). The formation enthalpy and Gibbs energy of Li<sub>2</sub>O<sub>2</sub> from calculations are -6.57 and -5.96 eV, respectively, which are in good agreement with the experimental data (-6.57 and -5.92 eV).<sup>53</sup>

In the charging process,  $Li^+$  ions under an electromotive force are desorbed from the  $Li_2O_2/Co_3O_4/O_2$  interface and subsequently diffused to the anode via the electrolyte.<sup>39,54</sup> Thermodynamically, the charging process can be described as

$$\Delta G = E - E_0 + \Delta N_{\rm Li} (\mu_{\rm Li} - eU) + \Delta N_{\rm O_2} \mu_{\rm O_2}$$
(1)

where *E* is the total energy of the slab,  $E_0$  is the total energy of the initial slab,  $\Delta N_{\text{Li}}$  and  $\Delta N_{\text{O}_2}$  are the numbers of Li and  $\text{O}_2$ removed, and  $\mu_{\text{Li}}$  and  $\mu_{\text{O}_2}$  represent the chemical potentials of Li bulk and  $\text{O}_2$ , respectively. *U* is the electromotive force corresponding to the charging voltage and can be derived from the thermodynamic equation of electrochemistry  $\Delta G = \Delta G^0 +$ *nFU*. The previous studies indicated that electrochemical process involving ion-coupled electron transfer can be well described by first-principles thermodynamics.<sup>54</sup> Although the same formula has been applied by different research groups to calculate the charging process of Li<sub>2</sub>O<sub>2</sub>, the definition of overpotential is different due to the shifting total free energy for each intermediate<sup>39</sup> or reaction step<sup>40,41</sup> to negative values. In this work, we define an overpotential by shifting the free energies of all intermediates to  $\Delta G < 0$ , which is consistent with ref 39.

# 3. RESULTS AND DISCUSSION

**3.1. Interfacial Model of \text{Li}\_2\text{O}\_2/\text{Co}\_3\text{O}\_4/\text{O}\_2.** As discussed above, an effective computational model is important for accurately describing the catalytic mechanism of the OER in a Li–O<sub>2</sub> battery. There are two possible interfacial sites, cathode/Li<sub>2</sub>O<sub>2</sub> and two-phase Li<sub>2</sub>O<sub>2</sub>/electrolyte, in the OER of a Li–O<sub>2</sub> battery. The recent study by in situ transmission electron microscopy (TEM) on the OER of Li<sub>2</sub>O<sub>2</sub> on MWCNT revealed that the reaction preferentially occurs in the three-phase interface electrolyte/Li<sub>2</sub>O<sub>2</sub>.<sup>38</sup> On the basis of these results, a theoretical model in which a nanoscale Li<sub>2</sub>O<sub>2</sub> is deposited on Co<sub>3</sub>O<sub>4</sub> surfaces to form a solid–solid interface was constructed, as shown in Figure 1a. Subsequently, Co<sub>3</sub>O<sub>4</sub> surface structures and supported Li<sub>2</sub>O<sub>2</sub> nanostructures should be described accurately on the basis of the previous experimental and theoretical data.<sup>23,44,51</sup>

The spinel Co<sub>3</sub>O<sub>4</sub> exhibits rich surface-dependent catalysis due to different Co2+/Co3+ percentages on specific surfaces.44,45,55 Careful inspection of experimental data finds that Co<sub>3</sub>O<sub>4</sub> (110) and (111) facets are exposed in a number of nanostructures.<sup>56–58</sup> The experimental studies on  $Co_3O_4$ @Ni by Cui et al. predicted that the  $Co_3O_4$  (111) surface was likely to be exposed as the catalytic surface of the OER.<sup>23</sup> In addition, previous studies have demonstrated that Co<sub>3</sub>O<sub>4</sub> (110) and (111) surfaces had high catalytic activity for the OER in electrochemical water-splitting cells.<sup>34,59-61</sup> In this work, the possible surface structures are determined by calculating their surface energies as a function of the chemical potential of oxygen. The calculated surface energies of  $Co_3O_4$  (110), (111), and (311) facets correlating with the chemical potential of oxygen are presented in Figure S1 (Supporting Information). Under O-rich conditions, Co<sub>3</sub>O<sub>4</sub> (111)C and (110)B have relatively low surface energies and are readily exposed with a large percentage area in the reaction of a lithium-air battery. The surface notations A-C in the present paper are labeled according to the traditional rule of discovered sequences in time.  $Co_3O_4$  (110)B has been reported in previous literature, and  $Co_3O_4$  (111)C is first found in the present work after the determined Co<sub>3</sub>O<sub>4</sub> (111)A and (111)B.<sup>44</sup> The detailed structures of Co<sub>3</sub>O<sub>4</sub> (110)B and (111)C are also illustrated in Figure S1. Due to their low surface energies, the Co<sub>3</sub>O<sub>4</sub> (111)C and (110)B surfaces were selected to explore the catalytic effect for the OER in a Li-O2 battery. More importantly, the Co<sub>3</sub>O<sub>4</sub> (111)C surface is fully oxygen terminated in a high O2 pressure environment, while Co and O atoms coexist in the  $Co_3O_4$  (110)B surface. The selection is aimed to determine the surface effects of catalytic activity for the OER in a  $Li-O_2$  battery.

SEM observations indicated that the morphology of the discharging product  $\text{Li}_2\text{O}_2$  exhibited toroidal and donutlike shapes.<sup>62</sup> Via calculating surface energies, Radin et al. established the equilibrium shape of  $\text{Li}_2\text{O}_2$  with O-rich (0001) and (1100) surfaces,<sup>51</sup> which was later confirmed by Yang et al.<sup>63</sup> Therefore, in our computational model, two O-rich surfaces ((0001) and (1100)) are exposed under vacuum to simulate the gas O<sub>2</sub> environment. Another dimension of  $\text{Li}_2\text{O}_2$  is calculated periodically. Our calculations focus on the catalytic activity of different Co<sub>3</sub>O<sub>4</sub> surfaces. A comparison of charging voltages in the different catalytic surfaces may cancel

out the calculation error generated by the  $Li_2O_2$  morphology when the same equilibrium structure of  $Li_2O_2$  is used.

For a practical computational cost, the limited-size interfacial model of  $Li_2O_2/Co_3O_4/O_2$  shown in Figure 1b,c has been constructed for calculations. The contact orientation of Li<sub>2</sub>O<sub>2</sub> and Co<sub>3</sub>O<sub>4</sub> is determined by the smallest lattice mismatch of Co<sub>3</sub>O<sub>4</sub> and Li<sub>2</sub>O<sub>2</sub> surfaces, which is shown in Figure S2 and Table S2 (Supporting Information). To build a stoichiometric structure, the Li layer of the Li<sub>2</sub>O<sub>2</sub> surface is directly contacted with the  $Co_3O_4$  surface while the O-rich surface of Li<sub>2</sub>O<sub>2</sub> is exposed on the top layer, which is consistent with the computational results of Radin et al.<sup>51</sup> We further construct a  $Li_2O_2/Co_3O_4$  interface model with a sandwich structure, as shown in Figure S3 (Supporting Information). Four layers of  $Co_3O_4$  (110)B and five layers of  $Co_3O_4$  (111)C are used in this model. After a structural relaxation, we found that the interfacial structure between Co<sub>3</sub>O<sub>4</sub> and the first layer Li<sub>2</sub>O<sub>2</sub> did not induce too much change in structure and charge distribution for the second layer Li<sub>2</sub>O<sub>2</sub> (see Figure S4 (Supporting Information)). As a result, two layers of  $Li_2O_2$  are deposited to interface with the  $Co_3O_4$  surface and the top layer of  $Li_2O_2$  is fixed in structural relaxations according to our trial calculations.

**3.2. OER Mechanism of Li<sub>2</sub>O<sub>2</sub> Supported on Co<sub>3</sub>O<sub>4</sub> Surface.** For comparison, OER paths starting from the Li<sub>2</sub>O<sub>2</sub> (1100) surface, which is directly exposed to vacuum in the Li<sub>2</sub>O<sub>2</sub>/Co<sub>3</sub>O<sub>4</sub>/O<sub>2</sub> interface,<sup>51</sup> were first calculated. The energy profile of stepwise Li<sup>+</sup> and O<sub>2</sub> desorption in OER paths is shown in Figure 2. Two possible reaction paths, Li<sup>+</sup>  $\rightarrow$  Li<sup>+</sup>  $\rightarrow$ 



**Figure 2.** Energy profiles of possible OER paths starting from the  $Li_2O_2$  (1 $\overline{100}$ ) surface. The charging voltages for  $Li^+ \rightarrow Li^+ \rightarrow O_2$  and  $Li^+ \rightarrow O_2 \rightarrow Li^+$  are 3.23 and 5.00 V, respectively.

 $O_2$  and  $Li^+ \rightarrow O_2 \rightarrow Li^+$ , are considered on the basis of our previous calculations<sup>64</sup> and Ceder et al.'s work for  $Li_2O_2$  oxidation.<sup>39</sup> In these reaction paths,  $O_2$  desorption is the rate-determining step: 1.75 eV for  $Li^+ \rightarrow Li^+ \rightarrow O_2$  and 3.33 eV for  $Li^+ \rightarrow O_2 \rightarrow Li^+$ . The charging voltage of the favorable path  $Li^+ \rightarrow Li^+ \rightarrow O_2$  is calculated as 3.23 V, which is consistent with the calculated value (2.83 V) of Ceder et al.<sup>39</sup> after taking account of the difference in  $O_2$  potentials (–9. 97 eV in their paper vs –9.12 eV in this work). Subsequently, these calculated



Figure 3. (a) Calculated structure of the  $Co_3O_4$  (111)C/Li<sub>2</sub> $O_2/O_2$  interface. The atoms in the rectanglular box are used to show structural evolution in (d). (b) Energy profiles of  $Li^+ \rightarrow Li^+ \rightarrow O_2$  and  $Li^+ \rightarrow O_2 \rightarrow Li^+$  OER paths of  $Li_2O_2$ . (c) Bader charge analysis of O1-O2-O3-O4 associated with the OER of  $Li_2O_2$ . The calculated O atoms in charge transfer analysis correspond to labeled O atoms in the box of (a). (d) Sketch map of  $Li^+ \rightarrow Li^+ \rightarrow O_2$  and  $Li^+ \rightarrow O_2$  (O2-O3).



Figure 4. (a) Calculated structure of the  $Co_3O_4$  (110)B/Li<sub>2</sub> $O_2/O_2$  interface. The atoms in the rectanglular box are used to show structural evolution in (d). (b) Energy profiles of  $Li^+ \rightarrow Li^+ \rightarrow O_2$  and  $Li^+ \rightarrow O_2 \rightarrow Li^+$  OER paths of  $Li_2O_2$ . (c) Bader charge analysis of O1-O2-O3-O4 associated with the OER of  $Li_2O_2$ . The calculated O atoms in charge transfer analysis correspond to labeled O atoms in the box of (a). (d) Sketch map of  $Li^+ \rightarrow Li^+ \rightarrow O_2$  and  $Li^+ \rightarrow O_2$  and L

charging voltages and  $O_2$  desorption energies will be used as a reference to determine the catalytic activities of  $Co_3O_4$  surfaces in the subsequent discussion.

On the basis of the established interfacial model, OER paths of the  $Li_2O_2$ -supported  $Co_3O_4$  (111)C surface were calculated.

A Bader charge analysis of the intermediates of the lowestenergy reaction path was performed to reveal the underlying catalytic mechanism. The calculated structure, energy profiles of OER paths ( $\text{Li}^+ \rightarrow \text{Li}^+ \rightarrow \text{O}_2$  and  $\text{Li}^+ \rightarrow \text{O}_2 \rightarrow \text{Li}^+$ ), and a charge analysis of OER intermediates of Li<sub>2</sub>O<sub>2</sub> supported on  $Co_3O_4(111)C$  are given in Figure 3a-c, respectively. The structural evolutions of two reaction paths are shown in Figure 3d.

According to relaxed structures, we did not find any O-O bond cleavage of Li<sub>2</sub>O<sub>2</sub> near the interface, but some Li<sup>+</sup> ions are attracted to approach the O-rich surface of Co<sub>3</sub>O<sub>4</sub>. In comparison, the O-O bond near the interface is 0.16 Å shorter than that of Li<sub>2</sub>O<sub>2</sub> due to a large charge transfer from  $Li_2O_2$  to the  $Co_3O_4$  surface. The  $Li^+ \rightarrow Li^+ \rightarrow O_2$  OER path corresponds to a relatively low charging voltage of 2.69 V, while the  $Li^+ \rightarrow O_2 \rightarrow Li^+$  OER path requires a charging voltage of 3.10 V. In addition, the former requires overcoming a lower barrier (1.27 eV) of  $O_2$  evolution, and the latter has a higher barrier of 1.50 eV for the corresponding step. A comparison with charging voltages of pure Li2O2 in Figure 2 reveals that the O-rich  $Co_3O_4$  (111)C surface has a catalytic effect in reducing the overpotential of  $\Delta U = 3.23 - 2.69 = 0.54$  V for the Li<sup>+</sup>  $\rightarrow$  $\text{Li}^+ \rightarrow \text{O}_2$  OER path and  $\Delta U = 5.00 - 3.10 = 1.90$  V for the  $\text{Li}^+$  $\rightarrow$  O<sub>2</sub>  $\rightarrow$  Li<sup>+</sup> OER path. As shown in Figure 3c, both O2–O3 and O1-O4 have a significant electron transfer which enhances species conversion from  $O_2^{2-}$  to  $O_2$ .

There are two kinds of oxygen atoms on the Co<sub>3</sub>O<sub>4</sub> (111)C surface: the two-coordinated (2c-O) and three-coordinated (3c-O) atoms. In the first step of the OER, the 2c-O and 3c-O gained 0.256 and 0.233 electron from high-energy occupied  $\pi^*$  orbitals of Li<sub>2</sub>O<sub>2</sub>, respectively. This electron transfer is favorable for Li<sub>2</sub>O<sub>2</sub> desorption. Although 2c-O may have a slightly stronger ability to obtain electrons from Li<sub>2</sub>O<sub>2</sub>, the synergistic role of 2c-O and 3c-O in gaining electrons is expected to be more important. As a comparison, it is found that the Co–O coexistence surface will break the O–O bond of Li<sub>2</sub>O<sub>2</sub>, as indicated in the discussion of the Co<sub>3</sub>O<sub>4</sub>(110B) surface. Therefore, it is thought that a surface fully covered by electron acceptors may be significant for Li<sub>2</sub>O<sub>2</sub> desorption.

Similarly, OER paths of Li<sub>2</sub>O<sub>2</sub> supported on Co<sub>3</sub>O<sub>4</sub> (110)B were calculated. The relaxed structure, energy profile of OER paths, Bader charge analysis for all intermediates, and structural evolutions of two OER paths are presented in Figure 4a–d, respectively. As shown in Figure 4a, a strong interfacial interaction between Li<sub>2</sub>O<sub>2</sub> and Co<sub>3</sub>O<sub>4</sub> induces O–O bond cleavage to form a dangling Co–O bond and Li<sub>2</sub>O species due to electron transfer from the d orbital of Co to  $\pi^*$  of O<sub>2</sub>. Particularly, this is an opposite electron transfer direction with Li<sub>2</sub>O<sub>2</sub>/Co<sub>3</sub>O<sub>4</sub> (111)C. Therefore, two categories of Li<sub>x</sub>O<sub>y</sub> species, Li<sub>2</sub>O<sub>2</sub> (O2–O3) and Li<sub>2</sub>O (O1–O4), should be considered to unravel the OER mechanism.

First of all, we consider the OER mechanism of Li<sub>2</sub>O<sub>2</sub> species on the Co<sub>3</sub>O<sub>4</sub> (110)B surface. The calculated OER paths of  $Li_2O_2$  (O2-O3) and corresponding structural evolution are presented in Figure 4b and d, respectively. The charging voltages for the  $\text{Li}^+ \rightarrow \text{Li}^+ \rightarrow \text{O}_2$  and  $\text{Li}^+ \rightarrow \text{O}_2 \rightarrow \text{Li}^+$  paths are calculated as 3.06 and 3.86 V, respectively. Taking pure Li<sub>2</sub>O<sub>2</sub> (Figure 2) as a reference, we found that  $Co_3O_4$  (110)B can decrease the charging overpotential with  $\Delta U = 3.23 - 3.06 =$ 0.17 V for the Li<sup>+</sup>  $\rightarrow$  Li<sup>+</sup>  $\rightarrow$  O<sub>2</sub> path and  $\Delta U = 5.00 - 3.86 =$ 1.14 V for the  $Li^{\scriptscriptstyle +}$   $\rightarrow$   $O_2 \rightarrow$   $Li^{\scriptscriptstyle +}$  path. In addition, two ratedetermining barriers of O2 desorption steps are reduced to 1.15 eV in Li^+  $\rightarrow$  Li^+  $\rightarrow$   $O_2$  and 1.03 eV in Li^+  $\rightarrow$   $O_2$   $\rightarrow$  Li^+ in comparison with the O<sub>2</sub> desorption barriers of 1.75 and 3.33 eV in Figure 2. As a result, it is predicted that  $Co_3O_4$  (110)B has a certain catalytic effect for Li2O2 species by reducing the charging overpotential and O<sub>2</sub> desorption barrier but this effect is weaker than that for  $Co_3O_4$  (111)C. As shown in Figure 4c,

O2–O3 in the second and third intermediates has a significant charge transfer which catalyzes  $Li_2O_2$  oxidation and is favorable to  $O_2$  desorption.

Previous experimental studies indicated that  $Li_2O$  might be formed with noble metals or metal oxides used as the cathode catalyst in a Li–O<sub>2</sub> battery.<sup>3,30,65–68</sup> However, the atomic scale OER mechanism for the Li<sub>2</sub>O species is complicated and has not been fully established. Two possible OER mechanisms for Li<sub>2</sub>O and O–Co\* species are considered in the current calculations and are presented in the equations

$$\mathrm{Li}_{2}\mathrm{O} + \mathrm{O} - \mathrm{Co}^{*} \rightarrow 2\mathrm{Li} + \mathrm{O}_{2} + \mathrm{Co}^{*}$$
(3)

$$2Li_2O + 2O - Co^* \rightarrow 4Li + O_2 + 2O - Co^*$$
 (4)

Equation 3 describes a continuous process of recombination of  $Li_2O$  and O(-Co) followed by desorption into  $O_2$  and 2Li, refreshing the  $Co_3O_4$  (110)B surface. The calculations show that this process requires a charging voltage of 5.61 V (see Figure S5 (Supporting Information)), which is unlikely to occur in practice. Equation 4 presents two formed  $Li_2O$  units combining together and desorbing into  $O_2$  and 2Li, leaving O-Co bonds on the (110)B surface. The calculation obtained a charging voltage of 3.16 V, which is lower than the charging voltage (3.23 V) of  $Li_2O_2$ . These calculated results indicate that the possible discharging product  $Li_2O$  may decompose under catalysis of O-modified  $Co_3O_4$  (110)B covering the Co atom with the O atom.

The calculations showed that O-modified  $Co_3O_4$  (110)B covering the Co atom with the O atom may be generated in the first discharging process. Therefore, it is worth exploring the OER mechanism of  $Li_2O_2$  supported on O-modified  $Co_3O_4$  (110)B in order to determine its catalytic activity. The calculated energy profile of  $Li^+ \rightarrow Li^+ \rightarrow O_2$  and optimized structures are presented in Figure 5. The charging voltage along



**Figure 5.** Calculated energy profiles of  $Li^+ \rightarrow Li^+ \rightarrow O_2$  OER of  $Li_2O_2$  supported on an O-modified  $Co_3O_4$  (110)B surface.

this reaction path is calculated as 4.01 V, which is much higher than that (3.23 V) of clean  $Li_2O_2$ . A careful inspection of structures indicates that O(-Co) has a strong attraction for  $Li^+$  ions. The Bader charge calculation shows that O(-Co) has an extra charge of  $-1.6e^-$ , indicating an electronic state of  $O^{2-}$ .

In summary, we predict that the Co/O-coexisted Co<sub>3</sub>O<sub>4</sub> (110)B may reduce the charging overpotential by ~0.17 V and O<sub>2</sub> desorption barrier by ~0.60 eV in the first charging process. However, this catalytic activity in reducing charging voltage and

Scheme 1. Comparison of Catalytic Mechanisms of  $Co_3O_4$  (111)C and (110)B Surfaces for OER in Electrochemical Water Splitting and OER in a Li- $O_2$  Battery, Respectively<sup>*a*</sup>

(a) Interfacial OER of  $Li_2O_2$  on O-rich  $Co_3O_4$  (111)C Surface



(b) Heterogeneous OER of H<sub>2</sub>O on Co/O-coexisted Co<sub>3</sub>O<sub>4</sub> (110)B Surface



<sup>a</sup>Here, RDS represents the rate-determining step.

 $O_2$  desorption energy may disappear in the subsequent cycles because the possible discharging product Li<sub>2</sub>O has a relatively high charging voltage. Therefore, it is predicted that  $Co_3O_4$  (110)B as a catalytic surface may have poor cycle performance in a Li– $O_2$  battery.

3.3. Influence of Surface Structure on Catalytic Activity. It is important to reveal surface effects of the catalytic activity on the basis of OER mechanisms of Li<sub>2</sub>O<sub>2</sub> on Co<sub>3</sub>O<sub>4</sub> (110)B and Co<sub>3</sub>O<sub>4</sub> (111)C. According to the Bader charge analysis (Figures 3c and 4c), O-rich  $Co_3O_4$  (111)C is determined to be a strong Lewis acid catalyst which prefers attracting electrons from Li<sub>2</sub>O<sub>2</sub>. Since such electron transfer enhances Li<sup>+</sup> and O<sub>2</sub> desorption, the charging voltage of Li<sub>2</sub>O<sub>2</sub> is effectively decreased. In contrast, acidic sites (O sites) in the  $Co_3O_4$  (110)B surface have a weak attraction for electrons in  $Li_2O_2$ , while basic sites (Co sites) of  $Co_3O_4$  (110)B induce O-O bond cleavage to form a stable phase of Li<sub>2</sub>O owing to electron transfer from Co atoms to Li2O2. The calculations suggest that the OER of Li<sub>2</sub>O requires a relatively high charging voltage. Therefore, a catalytic surface with higher Lewis acidity corresponds to a higher catalytic activity for Li<sub>2</sub>O<sub>2</sub> OER. It is concluded that an effective method to improve the catalytic activity of Li<sub>2</sub>O<sub>2</sub> OER is to prepare a Lewis acid surface for transition-metal oxides at a high O<sub>2</sub> pressure.

On the basis of the calculated results, two strategies are proposed to improve the catalytic activity of the metal/oxygenexposed surface. First of all, an effective passivation pretreatment for transition-metal sites under basic conditions is necessary to prevent reduction of  $Li_2O_2$  to form  $Li_2O$ , which was confirmed by the recent experimental studies of  $Co_3Mo_3N$ and  $Ti/MnO_2$  as bifunctional catalysts of the ORR and OER in a  $Li-O_2$  battery.<sup>19,69</sup> Secondly, given the same surface structure, late-transition-metal oxides may have a higher catalytic activity for  $Li_2O_2$  OER than early-transition-metal oxides due to the higher Lewis acidity.

Furthermore, the calculated OER mechanisms of a  $\text{Li}-O_2$  battery on  $\text{Co}_3\text{O}_4$  (111)C and electrochemical water splitting supported on  $\text{Co}_3\text{O}_4$  (110)B<sup>34</sup> are compared. As shown in Scheme 1, the Co/O-coexisted  $\text{Co}_3\text{O}_4$  (110)B surface was demonstrated to have high catalytic activity for water adsorption and the OER,<sup>34</sup> whereas the O-rich  $\text{Co}_3\text{O}_4$  (111) C surface has no catalytic activity because O–H bonds cannot be broken without Co ions being involved.<sup>70</sup> The water adsorption and oxidation on  $\text{Co}_3\text{O}_4$  surfaces are a typical of

heterogeneous catalysis where molecular/atomic adsorption strength on the surface is of importance to determine catalytic activity. In contrast, different catalytic mechanisms of  $Co_3O_4$ surfaces are presented in the OER of a Li– $O_2$  battery. The Orich  $Co_3O_4$  (111)C surface has a high catalytic activity for Li<sub>2</sub> $O_2$ OER due to electron transfer from  $O_2^{2-}$  to the surface, while the Co/O-coexisted  $Co_3O_4$  (110)B surface has a weak catalytic activity due to Li<sub>2</sub>O formation. The Li<sub>2</sub> $O_2$  decomposition on  $Co_3O_4$  surfaces is interfacial catalysis between two solid phases. Therefore, long-range electron transfer play an important role in determining catalytic activity.

3.4. Tailoring Catalytic Activity by Doping TM. Effective surface enhancement such as TM doping has been extensively applied to improve the activities of catalysts.<sup>71</sup> Previous experimental studies showed that the introduction of a TM into metal oxides and nitrides could regulate the catalytic activity of the OER in a  $\text{Li}-O_2$  battery.<sup>16,19,69</sup> Therefore, OER mechanisms of Li<sub>2</sub>O<sub>2</sub> catalyzed by a TM-doped Co<sub>3</sub>O<sub>4</sub> (111)C surface were calculated. In the present work, only TMs (Mn, Fe, Co, Ni, Ru, and Pd) nearby Co in the periodic table have been selected to substitute for Co. The Co atoms in the first layer are all three-coordinated with surrounding oxygen atoms. Three Co atoms are replaced by the selected TM corresponding to 25% doping concentration in the first layer. A relatively high doping concentration was designed so as to indicate an obvious catalytic effect. Moreover, the model is close to the real systems, as doping atoms will segregate to the surface, corresponding to a high doping concentration.<sup>71</sup> The detailed doping positions are illustrated in Figure S6 (Supporting Information). It should be pointed out that oxygen vacancies generated by doping different valence TMs were not considered in the current calculations. As reported by Metiu et al., oxygen vacancies with exposed TMs are strong bases that preferably donate electrons to Li2O2, which is unfavorable to the OER.71,72

In order to determine the thermodynamic stability of the doping system, the substituted energies have been calculated according to the equations

$$nM + TMO_{perfect} \rightarrow TMO_{doped} + nCo$$
 (5)

$$E_{\rm S} = \frac{E_{\rm TMO-doped} + nE_{\rm Co} - E_{\rm TMO-perfect} - nE_{\rm M}}{n} \tag{6}$$

where M is the dopant and *n* is the number of M in the model per super cell. Co and M are both in the bulk phase.  $E_{\text{TMO-perfect}}$ and  $E_{\text{TMO-doped}}$  represent the total energies of clean and doped surfaces of TMO, respectively. According to the formula (6), the substituted energies of TM-doped Co<sub>3</sub>O<sub>4</sub> (111)C (TM = Mn, Ni, Fe, Ru, Pd) were calculated as -1.99, 1.50, -0.46, -0.87, and -2.05 eV/atom, respectively. Except for Ni, other TMs have favorable thermodynamics to substitute for Co in Co<sub>3</sub>O<sub>4</sub> (111)C.

The catalytic activities of TM-doepd  $Co_3O_4$  were further established by calculating reducibility for overpotential and  $O_2$ desorption barrier. The calculated values of decreased potential and  $O_2$  desorption barrier were correlated with ionization potentials of doped transition metals. Figure 6 presents the



Figure 6. Decreased overpotential and  $O_2$ -desorption barrier in the OER of  $Li_2O_2$  supported on TM-doped  $Co_3O_4$  (111)C as a function of ionization potential of doped TM.

correlation of catalytic activity with ionization potential of doped TM. Pd-doped  $Co_3O_4(111)$  exhibited a comparable charging overpotential but exhibited a better catalytic activity in reducing  $O_2$  desorption energy. Therefore, it is predicted to be a promising catalyst for the charging reaction of a Li– $O_2$  battery. While no Pd-doped  $Co_3O_4$  as an OER catalyst has been reported so far, a similar system, Pd/MnO<sub>2</sub>, was determined to have a higher current density and discharging capacity.<sup>16</sup> Future experimental studies of Pd-doped  $Co_3O_4$  are highly desirable to confirm our prediction. In addition, Debart et al. found that  $CoFe_2O_4$  had a weaker catalytic activity in reducing the overpotential and improving the discharging capacity,<sup>8,14</sup> which is qualitatively consistent with our calculations.

In fact, tuning the catalytic activity of  $Co_3O_4$  (111) by doping TM is in nature consistent with the previously established structure-performance relation: that is, the Lewis acid strength of the catalyst surface is an important parameter to evaluate the catalytic activity for  $Li_2O_2$  OER. In addition to preparing transition metal oxides under relatively high  $O_2$  pressure, we further suggest another important strategy, doping TM with a higher ionization potential, to design catalysts for the  $Li_2O_2$  OER.

**3.5. Implication for Experiments.** Our previous experimental studies showed that the overpotential at a low current density could be reduced by ~0.6 V with  $Co_3O_4$  catalyst in comparison to that with no catalyst.<sup>14</sup> This is in good agreement with our calculated results, in which the  $Co_3O_4$  (111)C surface decreases the charging voltage by 0.54 V (3.23 – 2.69 V). In addition, Bruce et al. reported that  $Co_3O_4$  on a

carbon cathode could reduce the charging voltage by 0.5 V,<sup>14</sup> which is in qualitative agreement with our calculated value.

The present calculations reveal a possible mechanism of reducing overpotential by Co<sub>3</sub>O<sub>4</sub>, except for any complications of electrochemistry caused by electrolyte and electrode stability issues. There exists a great debate on the charging voltage of  $Li_2O_2$  and the real effectiveness of electrocatalysis in a  $Li-O_2$ battery. Experimental studies by Luntz et al. suggested that the charging plateau of  $Li_2O_2$  should be ~3.2 V and no OER catalysts were required.<sup>30</sup> However, they examined a  $Li-O_2$ battery with a small capacity and a monolayer Li<sub>2</sub>O<sub>2</sub> structure on a carbon electrode. Later, Yang et al. found that the charging voltage is apparently related to the size, composition, and morphology of discharging products.<sup>73,74</sup> The main charging plateau occurs at ~3.4 V, corresponding to ~0.5 V overpotential. According to first-principles thermodynamic calculations, Luntz et al. found a low OER overpotential in the various Li<sub>2</sub>O<sub>2</sub> surfaces.<sup>41</sup> However, the OER takes place on the interface of the cathode and  $Li_2O_2$  instead of the  $Li_2O_2$ surface,<sup>38</sup> which may generate a higher overpotential. By using metal electrodes and stable electrolyte in a Li-O<sub>2</sub> cell, Bruce<sup>28</sup> and Wen<sup>23</sup> also found that charging voltages of  $Li_2O_2$ should be 3.3-3.5 V without electrode and electrolyte stability issues. All this evidence indicates that only Li2O2 can usually generate the charging overpotential of 0.5 V, and electrocatalysis can reduce the charging overpotential of Li-O2 battery. Such an overpotential may be ascribed to a slower electrochemical reaction (OER) but fast electron transport.<sup>30,51</sup> Therefore, our calculations focus on reducing the overpotential of 2.9-3.5 V, which originates purely from Li<sub>2</sub>O<sub>2</sub> oxidation. The higher overpotential (3.5–4.0 V) observed in experiments may be interpreted as slow mass transport, desolvation, and side reactions.<sup>30,75,76</sup> Undoubtedly, it is relevant to reduce the OER overpotential of  $Li_2O_2$ , which can improve the round-trip efficiency of a Li-O<sub>2</sub> battery and avoid side reactions.

It is interesting to extend the calculated catalytic mechanism of  $Co_3O_4$  to other TMOs as catalysts of the OER in a Li $-O_2$ battery. As indicated above, electron transfer from Li<sub>2</sub>O<sub>2</sub> to the catalyst is the essence of catalytic activity in reducing charging overpotential and O2 desorption energy. On the basis of our calculations, three rules are proposed for designing a novel catalyst. They are expected to provide guidance on possible ways to manipulate the surface structure of the catalyst. First of all, the higher the acidity of the surface structure of the catalyst, the higher the catalytic activity it has. Tuning the acidity of TMO surfaces has been elaborately discussed in a previous review.<sup>71</sup> A systematical study of TMOs to catalyze OER is underway in our group. Second, surface oxygen ions have strong Lewis acidity to attract electrons from Li<sub>2</sub>O<sub>2</sub> and thus to enhance OER kinetics, whereas a basic surface with exposed Co leads to a highly stable Li2O formation. It is predicted that TMOs with a higher O content on the surface may have a higher catalytic activity for Li<sub>2</sub>O<sub>2</sub> OER because more Lewis acid sites could be exposed on their surfaces. Generally, TMOs prepared under a relatively high O2 pressure have more Oexposed polar surface structures. Third, doping TM with a higher ionization potential in TMO is a very effective strategy to improve the catalytic performance of the OER in a  $Li-O_2$ battery.

# 4. CONCLUSIONS

In the present paper, extensive DFT-based first-principles computational studies have been performed to understand the

complicated OER mechanism of  $Li_2O_2$  supported on  $Co_3O_4$  surfaces. According to our calculated results, we conclude the following.

(1) On the basis of our calculations, we determined that the OER in a Li–O<sub>2</sub> battery should preferably occur in the Li<sub>2</sub>O<sub>2</sub>/ catalyst/O<sub>2</sub> interface rather than the Li<sub>2</sub>O<sub>2</sub> surface, which is consistent with experimental observations. The computational model of the OER mechanism should contain two solid phases and a vacuum.

(2) The Co<sub>3</sub>O<sub>4</sub> (111)C surface with full coverage of Lewis acid sites has a high catalytic activity in reducing overpotential and O<sub>2</sub> desorption barrier due to electron transfer from Li<sub>2</sub>O<sub>2</sub> to the catalytic surface. The basic sites of the Co<sub>3</sub>O<sub>4</sub> (110)B surface induce Li<sub>2</sub>O<sub>2</sub> decomposition into Li<sub>2</sub>O and a dangling Co–O bond, which leads further to a high charging voltage in the subsequent cycles. This indicates that electron transfer from Li<sub>2</sub>O<sub>2</sub> to the catalyst is favorable to reduce overpotential and O<sub>2</sub> desorption energy.

(3) The calculations for transition-metal (TM)-doped  $Co_3O_4$  (111) indicate that P-type doping of  $Co_3O_4$  (111) exhibits a good catalytic effect in decreasing both charging overpotential and  $O_2$  desorption barrier. The ionization potential of doped TM has been determined to be an important parameter to regulate the catalytic activity of metal oxides.

(4) According to our calculated results, we propose three rules for designing an active catalyst to reduce overpotential and improve the current density of the OER in a  $\text{Li}-\text{O}_2$  battery. Therefore, our mechanistic studies for the OER mechanism of  $\text{Li}_2\text{O}_2$  supported on  $\text{Co}_3\text{O}_4$  should be helpful in the development of a high-performance  $\text{Li}-\text{O}_2$  battery.

# ASSOCIATED CONTENT

#### Supporting Information

The following file is available free of charge on the ACS Publications website at DOI: 10.1021/cs5014442.

Surface energy curves of  $Co_3O_4$ , lattice mismatch calculations of different match models, relaxed sandwich structures of the  $Li_2O_2/Co_3O_4$  interface, charge transfer analysis of the up-layer and down-layer of  $Li_2O_2$  in the relaxed sandwich structure of  $Li_2O_2/Co_3O_4$ , calculated potential energy profile of the  $Li_2O$  decomposition path at the  $Co_3O_4$  (110)B surface, and the structure of the TM-doped  $Co_3O_4$  (111) surface (<u>PDF</u>)

## AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail for J.L.: jliu@mail.sic.ac.cn.

#### Notes

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

This work is financially supported by the One-Hundred-Talent Project of the Chinese Academy of Sciences, and NSFC (51432010).

## REFERENCES

(1) Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. J. Phys. Chem. Lett. 2010, 1, 2193–2203.

(2) Cheng, F. Y.; Chen, J. Chem. Soc. Rev. 2012, 41, 2172-2192.

(3) Shao, Y. Y.; Ding, F.; Xiao, J.; Zhang, J.; Xu, W.; Park, S.; Zhang,

J. G.; Wang, Y.; Liu, J. Adv. Funct. Mater. 2013, 23, 987–1004.

- (4) Li, F. J.; Zhang, T.; Zhou, H. S. Energy Environ. Sci. 2013, 6, 1125–1141.
- (5) Peng, Z. Q.; Freunberger, S. A.; Chen, Y. H.; Bruce, P. G. Science **2012**, 337, 563–566.
- (6) Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. Nat. Chem. 2012, 4, 579–585.

(7) Christensen, J.; Albertus, P.; Sanchez-Carrera, R. S.; Lohmann, T.; Kozinsky, B.; Liedtke, R.; Ahmed, J.; Kojic, A. J. Electrochem. Soc. **2012**, 159, R1–R30.

(8) Debart, A.; Bao, J.; Armstrong, G.; Bruce, P. G. J. Power Sources 2007, 174, 1177–1182.

(9) Debart, A.; Paterson, A. J.; Bao, J.; Bruce, P. G. Angew. Chem., Int. Ed. 2008, 47, 4521-4524.

(10) Read, J. J. Electrochem. Soc. 2002, 149, A1190-A1195.

- (11) Zhang, G. Q.; Zheng, J. P.; Liang, R.; Zhang, C.; Wang, B.; Hendrickson, M.; Plichta, E. J. *J. Electrochem. Soc.* **2010**, *157*, A953–A956.
- (12) Cheng, H.; Scott, K. J. Power Sources 2010, 195, 1370-1374.

(13) Mizuno, F.; Nakanishi, S.; Kotani, Y.; Yokoishi, S.; Iba, H. *Electrochemistry* **2010**, *78*, 403–405.

(14) Débart, A.; Bao, J.; Armstrong, G.; Bruce, P. G. J. Power Sources **2007**, 174, 1177–1182.

(15) Lu, Y. C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. Electrochem. Solid-State Lett. **2010**, 13, A69–A72.

(16) Thapa, A. K.; Saimen, K.; Ishihara, T. *Electrochem. Solid-State* Lett. 2010, 13, A165–A167.

(17) Trahey, L.; Johnson, C. S.; Vaughey, J. T.; Kang, S. H.; Hardwick, L. J.; Freunberger, S. A.; Bruce, P. G.; Thackeray, M. M. *Electrochem. Solid-State Lett.* **2011**, *14*, A64–A66.

(18) Lee, J. H.; Black, R.; Popov, G.; Pomerantseva, E.; Nan, F. H.; Botton, G. A.; Nazar, L. F. *Energy Environ. Sci.* **2012**, *5*, 9558–9565.

(19) Jin, L.; Xu, L. P.; Morein, C.; Chen, C. H.; Lai, M.; Dharmarathna, S.; Dobley, A.; Suib, S. L. *Adv. Funct. Mater.* **2010**, 20, 3373–3382.

(20) Thapa, A. K.; Ishihara, T. J. Power Sources 2011, 196, 7016-7020.

(21) Wang, L.; Zhao, X.; Lu, Y. H.; Xu, M. W.; Zhang, D. W.; Ruoff, R. S.; Stevenson, K. J.; Goodenough, J. B. *J. Electrochem. Soc.* **2011**, 158, A1379–A1382.

(22) Lee, J. H.; Black, R.; Popov, G.; Pomerantseva, E.; Nan, F. H.; Botton, G. A.; Nazar, L. F. *Energy Environ. Sci.* **2012**, *5*, 9558–9565.

(23) Cui, Y. M.; Wen, Z. Y.; Liu, Y. Energy Environ. Sci. 2011, 4, 4727-4734.

(24) Lu, Y. C.; Xu, Z. C.; Gasteiger, H. A.; Chen, S.; Hamad-Schifferli, K.; Shao-Horn, Y. J. Am. Chem. Soc. 2010, 132, 12170–12171.

- (25) Peng, Z.; Freunberger, S. A.; Chen, Y.; Bruce, P. G. Science **2012**, 337, 563–566.
- (26) Sun, B.; Munroe, P.; Wang, G. X. Sci. Rep. 2013, DOI: 10.1038/ srep02247.
- (27) He, P.; Wang, Y. G.; Zhou, H. S. Chem. Commun. 2011, 47, 10701–10703.

(28) Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Chen, Y. H.; Liu, Z.; Bruce, P. G. *Nat. Mater.* **2013**, *12*, 1050–1056 DOI: 10.1038/ nmat3737.

(29) Shui, J. L.; Karan, N. K.; Balasubramanian, M.; Li, S. Y.; Liu, D. J. J. Am. Chem. Soc. **2012**, 134, 16654–16661.

(30) McCloskey, B. D.; Scheffler, R.; Speidel, A.; Bethune, D. S.; Shelby, R. M.; Luntz, A. C. J. Am. Chem. Soc. **2011**, 133, 18038–18041.

(31) Zhang, L. L.; Wang, Z. L.; Xu, D.; Xu, J. J.; Zhang, X. B.; Wang, L. M. *Chin. Sci. Bull.* **2012**, *57*, 4210–4214.

(32) Zhang, G. Q.; Zheng, J. P.; Liang, R.; Zhang, C.; Wang, B.; Au, M.; Hendrickson, M.; Plichta, E. J. *J. Electrochem. Soc.* **2011**, *158*, A822–A827.

(33) Yang, W.; Salim, J.; Ma, C.; Ma, Z. H.; Sun, C. W.; Li, J. Q.;

Chen, L. Q.; Kim, Y. Electrochem. Commun. 2013, 28, 13–16. (34) Chen, J.; Selloni, A. J. Phys. Chem. Lett. 2012, 3, 2808–2814.

(35) Khodakov, A. Y.; Lynch, J.; Bazin, D.; Rebours, B.; Zanier, N.;

Moisson, B.; Chaumette, P. J. Catal. **1997**, 168, 16–25.

- (37) Black, R.; Lee, J. H.; Adams, B.; Mims, C. A.; Nazar, L. F. Angew. Chem., Int. Ed. **2013**, 52, 392–396.
- (38) Zhong, L.; Mitchell, R. R.; Liu, Y.; Gallant, B. M.; Thompson, C. V.; Huang, J. Y.; Mao, S. X.; Shao-Horn, Y. *Nano Lett.* **2013**, *13*, 2209–2214.

(39) Mo, Y. F.; Ong, S. P.; Ceder, G. *Phys. Rev. B* **2011**, *84*, 1–9. (40) Hummelshoj, J. S.; Blomqvist, J.; Datta, S.; Vegge, T.; Rossmeisl,

J.; Thygesen, K. S.; Luntz, A. C.; Jacobsen, K. W.; Norskov, J. K. J. Chem. Phys. 2010, 132, 071101 DOI: 10.1063/1.3298994.

- (41) Hummelshoj, J. S.; Luntz, A. C.; Norskov, J. K. J. Chem. Phys. **2013**, 138, 1–12.
- (42) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169-11186.
- (43) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15-50.
- (44) Xu, X.-L.; Chen, Z.-H.; Li, Y.; Chen, W.-K.; Li, J.-Q. Surf. Sci. 2009, 603, 653–658.
- (45) Jiang, D.-e.; Dai, S. Phys. Chem. Chem. Phys. 2011, 13, 978–984.
  (46) Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.;
  Sutton, A. P. Phys. Rev. B 1998, 57, 1505–1509.
- (47) Ren, Y.; Ma, Z.; Qian, L. P.; Dai, S.; He, H. Y.; Bruce, P. G. Catal. Lett. 2009, 131, 146–154.

(48) Razdobarov, V. A.; Sadykov, V. A.; Veniaminov, S. A.; Bulgakov, N. N.; Kovalenko, O. N.; Pankratiev, Y. D.; Popovskii, V. V.; Kryukova, G. N.; Tikhov, S. F. *React. Kinet. Catal. Lett.* **1988**, *37*, 109–114.

- (49) Pollard, M. J.; Weinstock, B. A.; Bitterwolf, T. E.; Griffiths, P. R.; Newbery, A. P.; Paine, J. B., III *J. Catal.* **2008**, *254*, 218–225.
- (50) Petitto, S. C.; Langell, M. A. J. Vac Sci. Technol. A 2004, 22, 1690–1696.

(51) Radin, M. D.; Rodriguez, J. F.; Tian, F.; Siegel, D. J. J. Am. Chem. Soc. **2012**, 134, 1093–1103.

(52) Chase, M. W. NIST-JANAF Thermochemical Tables, 4th ed.; American Institute of Physics: Melville, NY, 1998.

(53) Chase, M. W. American Institute of Physics: Melville, NY, 1998.
(54) Rossmeisl, J.; Norskov, J. K.; Taylor, C. D.; Janik, M. J.; Neurock, M. J. Phys. Chem. B 2006, 110, 21833–21839.

(55) Xu, X.-L.; Yang, E.; Li, J.-Q.; Li, Y.; Chen, W.-K. ChemCatChem. 2009, 1, 384-392.

- (56) Kapteijn, F.; Rodriguez-Mirasol, J.; Moulijn, J. A. *Appl. Catal., B* **1996**, *9*, 25–64.
- (57) Xu, R.; Zeng, H. C. J. Phys. Chem. B 2003, 107, 926-930.
- (58) Liu, X. H.; Qiu, G. Z.; Li, X. G. Nanotechnology **2005**, *16*, 3035–3040.
- (59) Yeo, B. S.; Bell, A. T. J. Am. Chem. Soc. 2011, 133, 5587–5593.
  (60) Esswein, A. J.; McMurdo, M. J.; Ross, P. N.; Bell, A. T.; Tilley,
- T. D. J. Phys. Chem. C 2009, 113, 15068-15072.
- (61) Lu, B. A.; Cao, D. X.; Wang, P.; Wang, G. L.; Gao, Y. Y. Int. J. Hydrogen Energy **2011**, 36, 72–78.
- (62) Mitchell, R. R.; Gallant, B. M.; Shao-Horn, Y.; Thompson, C. V. J. Phys. Chem. Lett. 2013, 4, 1060–1064.
- (63) Gallant, B. M.; Kwabi, D. G.; Mitchell, R. R.; Zhou, J.; Thompson, C. V.; Shao-Horn, Y. *Energy Environ. Sci.* **2013**, *6*, 2518–2528.
- (64) Ren, X.; Zhu, J.; F, D.; Liu, J.; Zhang, W. J. Phys. Chem. C 2014, 118, 22412–22418.
- (65) Pal, R.; Wang, L. M.; Pei, Y.; Wang, L. S.; Zeng, X. C. J. Am. Chem. Soc. **2012**, 134, 9438–9445.
- (66) Freunberger, S. A.; Chen, Y. H.; Drewett, N. E.; Hardwick, L. J.; Barde, F.; Bruce, P. G. Angew. Chem., Int. Ed. **2011**, 50, 8609–8613.
- (67) Zhang, L. L.; Zhang, X. B.; Wang, Z. L.; Xu, J. J.; Xu, D.; Wang, L. M. Chem. Commun. **2012**, 48, 7598–7600.
- (68) Lim, H. D.; Park, K. Y.; Gwon, H.; Hong, J.; Kim, H.; Kang, K. Chem. Commun. 2012, 48, 8374–8376.
- (69) Zhang, K. J.; Zhang, L. X.; Chen, X.; He, X.; Wang, X. G.; Dong, S. M.; Han, P. X.; Zhang, C. J.; Wang, S.; Gu, L.; Cui, G. L. J. Phys.
- Chem. C 2013, 117, 858–865. (70) Nakamura, R.; Nakato, Y. J. Am. Chem. Soc. 2004, 126, 1290– 1298.

- (71) McFarland, E. W.; Metiu, H. Chem. Rev. 2013, 113, 4391–4427.
  (72) Metiu, H.; Chrétien, S.; Hu, Z.; Li, B.; Sun, X. J. Phys. Chem. C 2012, 116, 10439–10450.
- (73) Gallant, B. M.; Kwabi, D. G.; Mitchell, R. R.; Zhou, J. G.; Thompson, C. V.; Shao-Horn, Y. *Energy Environ. Sci.* **2013**, *6*, 2518– 2528.
- (74) Lu, Y. C.; Shao-Horn, Y. J. Phys. Chem. Lett. 2013, 4, 93-99.
- (75) McCloskey, B. D.; Scheffler, R.; Speidel, A.; Girishkumar, G.; Luntz, A. C. J. Phys. Chem. C 2012, 116, 23897-23905.
- (76) Cui, Y. M.; Wen, Z. Y.; Liang, X.; Lu, Y.; Jin, J.; Wu, M. F.; Wu, X. W. Energy Environ. Sci. 2012, 5, 7893-7897.